Dissociation of extrastriate body and biological-motion selective areas by manipulation of visual-motor congruency

نویسندگان

  • Ioannis Kontaris
  • Alison J. Wiggett
  • Paul E. Downing
چکیده

To date, several posterior brain regions have been identified that play a role in the visual perception of other people and their movements. The aim of the present study is to understand how these areas may be involved in relating body movements to their visual consequences. We used fMRI to examine the extrastriate body area (EBA), the fusiform body area (FBA), and an area in the posterior superior temporal sulcus (pSTS) that responds to patterns of human biological motion. Each area was localized in individual participants with independent scans. In the main experiment, participants performed and/or viewed simple, intransitive hand actions while in the scanner. An MR-compatible camera with a near-egocentric view of the participant's hand was used to manipulate the relationship between motor output and the visual stimulus. Participants' only view of their hands was via this camera. In the Compatible condition, participants viewed their own live hand movements projected onto the screen. In the Incompatible condition, participants viewed actions that were different from the actions they were executing. In pSTS, the BOLD response in the Incompatible condition was significantly higher than in the Compatible condition. Further, the response in the Compatible condition was below baseline, and no greater than that found in a control condition in which hand actions were performed without any visual input. This indicates a strong suppression in pSTS of the response to the visual stimulus that arises from one's own actions. In contrast, in EBA and FBA, we found a large but equivalent response to the Compatible and Incompatible conditions, and this response was the same as that elicited in a control condition in which hand actions were viewed passively, with no concurrent motor task. These findings indicate that, in contrast to pSTS, EBA and FBA are decoupled from motor systems. Instead we propose that their role is limited to perceptual analysis of body-related visual input.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Compensatory activity in the extrastriate body area of Parkinson's disease patients.

Compensatory mechanisms are a crucial component of the cerebral changes triggered by neurodegenerative disorders. Identifying such compensatory mechanisms requires at least two complementary approaches: localizing candidate areas using functional imaging, and showing that interference with these areas has behavioral consequences. Building on recent imaging evidence, we use this approach to test...

متن کامل

Triple Dissociation of Faces, Bodies, and Objects in Extrastriate Cortex

Neuroscientists have long debated whether focal brain regions perform specific cognitive functions [1-5], and the issue remains central to a current debate about visual object recognition. The distributed view of cortical function suggests that object discrimination depends on dispersed but functionally overlapping representations spread across visual cortex [6-8]. The modular view claims diffe...

متن کامل

Spatiotemporal tuning of the facilitation of biological motion perception by concurrent motor execution.

The execution of motor behavior influences concurrent visual action observation and especially the perception of biological motion. The neural mechanisms underlying this interaction between perception and motor execution are not exactly known. In addition, the available experimental evidence is partially inconsistent because previous studies have reported facilitation as well as impairments of ...

متن کامل

Unmasking motion-processing activity in human brain area V5/MT+ mediated by pathways that bypass primary visual cortex.

Most models of the human visual system argue that higher-order motion-processing cortical regions receive their inputs only via the primary visual cortex (striate cortex), rather than also via direct projections from the thalamus that bypass primary visual cortex. However, recent evidence in non-human primates, along with some evidence in humans with damaged primary visual cortex (e.g., "blinds...

متن کامل

A double dissociation between striate and extrastriate visual cortex for pattern motion perception revealed using rTMS.

The neural mechanisms underlying the integration and segregation of motion signals are often studied using plaid stimuli. These stimuli consist of two spatially coincident dynamic gratings of differing orientations, which are either perceived to move in two unique directions or are integrated by the visual system to elicit the percept of a checkerboard moving in a single direction. Computations...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 47  شماره 

صفحات  -

تاریخ انتشار 2009